asreview.models.queriers.Max#
- class asreview.models.queriers.Max[source]#
Bases:
QueryMixin
,BaseEstimator
Maximum query strategy.
Choose the most likely samples to be included according to the model.
Methods
__init__
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
query
(p)Rank the instances of the feature matrix.
set_params
(**params)Set the parameters of this estimator.
Attributes
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing (MetadataRequest) – A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params (dict) – Parameter names mapped to their values.
- label = 'Maximum'#
- name = 'max'#
- query(p)[source]#
Rank the instances of the feature matrix.
- Parameters:
p (numpy.ndarray) – The probability of inclusion for each record in the feature matrix.
- Returns:
numpy.ndarray – The QueryStrategy ranks the row numbers of the feature matrix. It returns an array of shape (len(X),) containing the row indices in ranked order.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self (estimator instance) – Estimator instance.